Sunday, May 3, 2009

energy - photosynthesis research

About Photosynthesis

Photosynthesis is a process by which green plants and certain other organisms use the energy of light to convert carbon dioxide and water into the simple sugar glucose. In so doing, photosynthesis provides the basic energy source for virtually all organisms. An extremely important byproduct of photosynthesis is oxygen, on which most organisms depend.
Photosynthesis nourishes almost all of the living world directly or indirectly. Like plants, humans and other animals depend on glucose as an energy source, but they are unable to produce it on their own and must rely ultimately on the glucose produced by plants. Moreover, the oxygen humans and other animals breathe is the oxygen released during photosynthesis. Humans are also dependent on ancient products of photosynthesis, known as fossil fuels, for supplying most of our modern industrial energy. These fossil fuels, including natural gas, coal, and petroleum, are composed of a complex mix of hydrocarbons, the remains of organisms that relied on photosynthesis millions of years ago. Thus, virtually all life on earth, directly or indirectly, depends on photosynthesis as a source of food, energy, and oxygen, making it one of the most important biochemical processes known.
As for plants themselves, they use much of this glucose, a carbohydrate, as an energy source to build leaves, flowers, fruits, and seeds. They also convert glucose to cellulose, the structural material used in their cell walls. Most plants produce more glucose than they use, however, and they store it in the form of starch and other carbohydrates in roots, stems, and leaves. The plants can then draw on these reserves for extra energy or building materials.

How Photosynthesis works

The process of photosynthesis is divided into two stages.

Stage 1: Light dependent reactions
The light-dependent reactions uses solar power to generate ATP and NADPH2, which provide chemical and reducing power.
The reaction happens in the thylakoid membrane and converts light energy to chemical energy. In the thylakoid membranes, chlorophyll is organized along with other molecules into two photosystems (I and II). Photosystems are the light-harvesting units of the thylakoid membrane. Each photosystem has an antenna of a few hundred pigment molecules.



When a photon of light strikes a pigment molecule, the energy is passed from molecule to molecule until it reaches the reaction center which contains a particular form of chlorophyll a. The reaction-center chlorophyll of photosystem I is known as P700 because this pigment is best at absorbing light having a wavelength of 700 nm (the far-red part of the light spectrum). The chlorophyll at the reaction-center of photosystem II is called P680 because its absorption spectrum has a peak of 680 nm (in the red part of the light spectrum). These two pigments, P700 and P680, are actually identical chlorophyll a molecules. However, their association with different protein molecules in the thylakoid membrane accounts for the slight differences in light-absorbing properties. At the reaction center, the absorbed light energy drives an oxidation-reduction reaction (loss and gain of electrons). An excited electron from the reaction-center chlorophyll is captured by a specialized molecule called the primary acceptor.
The energy harvested via the light reaction is stored by forming a chemical called ATP (adenosine triphosphate). a compound used by cells for energy storage. This chemical is made of the nucleotide adenine bonded to a ribose sugar, and that is bonded to three phosphate groups. This molecule is very similar to the building blocks for our DNA.
Stage 2: Light independent reactions
The dark reaction happens when the ATP is used to make glucose.
The dark reaction takes place in the stroma within the chloroplast, and converts CO2 to sugar. This reaction doesn't directly need light in order to occur, but it does need the products of the light reaction (ATP and another chemical called NADPH). The dark reaction involves a cycle called the Calvin cycle in which CO2 and energy from ATP are used to form sugar.

Extra:
Most plants put CO2 directly into the Calvin cycle. Thus the first stable organic compound formed is the glyceraldehyde 3-phosphate. Since that molecule contains three carbon atoms, these plants are called C3 plants. For all plants, hot summer weather increases the amount of water that evaporates from the plant. Plants lessen the amount of water that evaporates by keeping their stomates closed during hot, dry weather. Unfortunately, this means that once the CO2 in their leaves reaches a low level, they must stop doing photosynthesis. Even if there is a tiny bit of CO2 left, the enzymes used to grab it and put it into the Calvin cycle just don't have enough CO2 to use. Typically the grass in our yards just turns brown and goes dormant. Some plants like crabgrass, corn, and sugar cane have a special modification to conserve water. These plants capture CO2 in a different way: they do an extra step first, before doing the Calvin cycle. These plants have a special enzyme that can work better, even at very low CO2 levels, to grab CO2 and turn it first into oxaloacetate, which contains four carbons. Thus, these plants are called C4 plants. The CO2 is then released from the oxaloacetate and put into the Calvin cycle. This is why crabgrass can stay green and keep growing when all the rest of your grass is dried up and brown.

There is yet another strategy to cope with very hot, dry, desert weather and conserve water. Some plants (for example, cacti and pineapple) that live in extremely hot, dry areas like deserts, can only safely open their stomates at night when the weather is cool. Thus, there is no chance for them to get the CO2 needed for the dark reaction during the daytime. At night when they can open their stomates and take in CO2, these plants incorporate the CO2 into various organic compounds to store it. In the daytime, when the light reaction is occurring and ATP is available (but the stomates must remain closed), they take the CO2 from these organic compounds and put it into the Calvin cycle. These plants are called CAM plants, which stands for crassulacean acid metabolism after the plant family, Crassulaceae (which includes the garden plant Sedum) where this process was first discovered.

No comments:

Post a Comment